
The Sol Assembler Manual

The Sol assembler is an editor + assembler made for the ZX Spectrum Next computer. It creates and imports
source files (text files with the .asm file name ending) and assembles them into machine code that may be
stored in an executable file (a .tap file including an auto loader) to be launched from the browser menu of
the Spectrum Next.

The Command Line

The boƩom line of the screen is reserved for input of commands and for system messages to the user. You
can switch between the command line and the editor area by pressing ‘EDIT’.

Available commands are as follows.

Memory: Displays the amount of used and free memory. Be aware that used memory includes some free
memory reserved for ensuring fast editor response, and is measured in terms of whole 8k banks.

Find [string]: Go to next instance of given string in the source code. Find with no argument will use the
string from the last find command if any.

Save [filename]: Saves the source code to an .asm file of given name. If the file name is omiƩed the source
code will be saved using the same name used in previous load or save if such exist, to the current directory.
Any exisƟng file of the same name is overwriƩen. File names may be 10 characters in length, leƩers or
numbers allowed. Do not include the .asm ending. If a file name is specified a file system browser is opened
for selecƟng where to store the file.

Saveas [filename]: Always brings up the file system browser. Otherwise works as the save command.

Load [filename]: Loads a source code file into memory. The document is modified to fit the requirements of
the assembler, i.e. only control code allowed is 13 (enter), and no code values above 127 either. All illegal
codes are simply removed, as are line endings if lines exceed 79 characters (no column scrolling features). If
a file name is specified loads the file from the current directory. Otherwise the file system browser is
opened for the user to select a file to load.

New: Starts a new project. Be aware that any unsaved source code in the editor will be lost, as the
command simply clears the memory for a new project.

Assemble [filename] [-nonext]: You may use the short form A as an alternaƟve command. Assembles the
code and opƟonally outputs to given file. If a file name is not specified the code is only assembled and not
saved to file. Otherwise the file system browser is opened for selecƟng where to store the output file. The
opƟonal ‘-nonext’ removes support for Spectrum Next specific instrucƟons, i.e. extended instrucƟon set.

Exit: Reboot.

The Editor

The arrow keys are used for geƫng around in the document. NoƟce that leŌ + right arrow do not go to new
line, and delete will only delete characters on the current line. If you want to delete a line, use line delete
(symbol shiŌ + delete).

Symbol shiŌ + arrow keys will scroll up + down as well as page up/down.

Extend + leŌ/right will jump 500 lines back/forward in source code.

Caps shiŌ + arrow keys are used for going to start/end of line as well as start/end of source code.

True Video toggles color theme.

Variable Assignments

All variable assignments (not labels) must be placed at the beginning of the document, following a ‘DEFINE:’
label. A variable assignment goes like

variable = value

or

variable EQU value

A variable name must start with a leƩer and contain only leƩers and numbers. It must be of at least 3
characters in length. The value may be a decimal, hexadecimal or binary integer. The value specificaƟon
defines the legal uses of the variable, i.e. a variable assigned the value 345 may not be used where a byte is
expected. Use ‘$’, ‘#’ or ‘0x’ prefix for hex and ‘%’ prefix for binary numbers.

I use the term ‘variable’ here, although they are in fact constants. The real variables are the registers and
the memory.

Expressions

Where any value is expected (in a variable assignment or data statement or otherwise) it may be given in
the form of an expression. Valid operators are +, -, *, /, %, <<,>>,&,^ and |, and parenthesis ‘(’ and ‘)’ may
also be used in an expression, as well as prefixes +, - and ~. Here is a detailed overview of the valid
operaƟons and how they work:

Order Operator Name Notes
Prefix + Plus Does nothing.

- NegaƟon Reverse the sign (two’s complement)
~ Bitwise inverƟon One’s complement, reverse all bits.

1 * MulƟplicaƟon
/ Integer division Result is rounded towards 0.
% Modulo Remainder aŌer division. Various convenƟons exist regarding

how to treat modulo when dividend or divisor (or both) is
negaƟve. For this assembler the result will have the same sign
as the dividend, corresponding to division being rounded
towards 0.

2 + AddiƟon
- SubtracƟon

3 << BitshiŌ leŌ Arithmically bitshiŌ by given number of bits. ShiŌs 0’s in from
right.

>> BitshiŌ right Arithmically bitshiŌ by given number of bits. ShiŌs the sign bit
in from leŌ.

4 & Bitwise AND
5 ^ Bitwise XOR
6 | Bitwise OR

The order determines the priority of operaƟons in the expression.

Overflow: For internal representaƟon 24-bit integers are used, plus a sign to indicate the integer type
(signed/unsigned). Any operaƟon where numbers fall out of the scope of 24-bit representaƟon will generate
overflow error, as will any expression result that is out of scope of a 16-bit integer (word), or whatever is
expected by the context in which the expression appears.

ORG Statements

The source document must contain at least one ORG statement. The first ORG statement must be located
right aŌer the variable assignments. The syntax of an ORG statement is

ORG start address

where the start address is the address at which the code should be loaded into prior to execuƟon. It defines
the values of labels.

Labels

Labels are variables that are assigned a value corresponding to the address at which they appear in code. A
label must start at the beginning of a line and ended with a ‘:’. Nothing else may be on the line except for
spaces and comments. The variable naming rules follow that of variable assignments.

Data Statements

DEFB byte1, byte2, …, byten: A sequence of bytes are stored. A character or a string may also be included in
the sequence. In this case the code(s) of the character(s) are stored.

DEFW word1, word2, …, wordn: A sequence of 16-bit values are stored.

DEFS number of bytes [SET value]: Skips a given number of bytes (reserves). The ‘SET’ addiƟon is opƟonal
and allows for seƫng all skipped bytes to a given value.

The File System Browser

A simple file system browser for selecƟng file or directory. Move up and down with arrow keys and select
with enter. In the case files and subdirectories do not fit on screen, right arrow loads another screen full,
and leŌ arrow starts over at the top of the list. This is to compensate for the lack of a scroll feature. Break
exits without selecƟng.

AlternaƟve Key CombinaƟons for Old Spectrum Keyboards

CAPS + 1 : EDIT
CAPS + 2 : CAPS LOCK
CAPS + 3 : TOGGLE COLOR THEME (coming feature)
CAPS + 4 : BACK 500 LINES
CAPS + 5 : LEFT
CAPS + 6 : DOWN
CAPS + 7 : UP
CAPS + 8 : RIGHT
CAPS + 9 : FORWARD 500 LINES
CAPS + 0 : DELETE
CAPS + SPACE : BREAK
SYMBOL + Q : PAGE UP
SYMBOL + E : PAGE DOWN
SYMBOL + I : LINE DELETE
SYMBOL + W : ©

